首页> 外文OA文献 >Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability
【2h】

Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability

机译:有限缓冲随机变量状态空间的最优枚举   分子网络和稳态景观的精确计算   可能性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochasticity plays important roles in molecular networks when molecularconcentrations are in the range of $0.1 \mu$M to $10 n$M (about 100 to 10copies in a cell). The chemical master equation provides a fundamentalframework for studying these networks, and the time-varying landscapeprobability distribution over the full microstates provide a fullcharacterization of the network dynamics. A complete characterization of thespace of the microstates is a prerequisite for obtaining the full landscapeprobability distribution of a network. However, there are neither closed-formsolutions nor algorithms fully describing all microstates for a given molecularnetwork. We have developed an algorithm that can exhaustively enumerate themicrostates of a molecular network of small copy numbers under the finitebuffer condition that the net gain in newly synthesized molecules is smallerthan a predefined limit. We also describe a simple method for computing theexact mean or steady state landscape probability distribution over microstates.We show how the full landscape probability for the gene networks of theself-regulating gene and the toggle-switch in the steady state can be fullycharacterized. We also give an example using the MAPK cascade network. Our algorithm works for networks of small copy numbers buffered with a finitecopy number of net molecules that can be synthesized, regardless of thereaction stoichiometry, and is optimal in both storage and time complexity. Thebuffer size is limited by the available memory or disk storage. Our algorithmis applicable to a class of biological networks when the copy numbers ofmolecules are small and the network is closed, or the network is open but thenet gain in newly synthesized molecules does not exceed a predefined buffercapacity.
机译:当分子浓度在$ 0.1μM到$ 10 n $ M的范围内(一个细胞中大约100到10个副本)时,随机性在分子网络中起重要作用。化学主方程式为研究这些网络提供了基本框架,而在整个微状态下随时间变化的景观概率分布提供了网络动力学的完整特征。微状态空间的完整表征是获得网络的完整景观概率分布的前提。但是,既没有封闭形式的解决方案,也没有算法来完整描述给定分子网络的所有微状态。我们已经开发了一种算法,该算法可以穷举枚举小拷贝数的分子网络的微状态,这种状态是在新合成的分子的净增益小于预定限制的有限缓冲条件下进行的。我们还描述了一种计算微状态精确均值或稳态景观概率分布的简单方法。我们展示了如何充分表征自调节基因和稳态开关系统基因网络的全景观概率。我们还给出了一个使用MAPK级联网络的示例。我们的算法适用于小拷贝数的网络,该网络以有限拷贝数的网络分子可以合成,无论反应化学计量如何,都可以合成,并且在存储和时间复杂度方面都是最佳的。缓冲区大小受可用内存或磁盘存储空间的限制。当分子的拷贝数很小并且网络是封闭的,或者网络是开放的,但是新合成的分子的净增益未超过预定的缓冲能力时,我们的算法适用于一类生物网络。

著录项

  • 作者

    Cao, Youfang; Liang, Jie;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号